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Abstract
The maturated and unmaturated groups have been introduced by S. Fujita who used them in the markaracter table and
the Q-conjugacy character table of a finite group. Fujita introduced more concise forms called the Q-conjugacy charac-
ters with integer-valued of the irreducible characters of finite groups and applied his results in this area of research to
enumerate isomers of molecules. In this paper using GAP program all integer-valued characters of the full non-rigid
group (f-NRG) of tetramethylethylene (2,3-dimethylbut-2-ene) is calculated by the Q-conjugacy relationships. It is
shown that this group has 29 dominant classes (similarly, Q-conjugacy characters) such that 16 of them are unmaturated
(similarly, Q-conjugacy characters such that they are the sum of two irreducible characters). Then the markaracter table
and Q-conjugacy character table of the f-NRG of tetramethylethylene are derived for the first time.

Keywords: Full non-rigid group, markaracter table, Q-conjugacy character table, tetramethylethylene (2,3-dimethyl-
but-2-ene).

1. Introduction
In order to develop new methods of combinatorial

enumeration of isomers, some relationship between cha-
racter tables containing characters for irreducible repre-
sentations and mark tables containing marks for coset re-
presentations have been clarified by S. Fujita who propo-
sed not only markaracter tables, which enable us to dis-
cuss characters and marks on a common basis, but also Q-
conjugacy character tables, which are obtained for finite
groups. The enumeration of chemical compounds has
been accomplished by various methods, but the Pólya-
Redfield theorem has been a standard method for combi-
natorial enumerations of graphs and chemical com-
pounds. A dominant class is defined as a disjoint union of
conjugacy classes that corresponds to the same cyclic sub-
group, which is selected as a representative of conjugate
cyclic subgroups. Let G be a finite group and h1, h2 ∈ G.
We say h1, h2 are Q-conjugate if there exists t ∈ G such
that t–1 <h1> t = <h2>. The Q-conjugacy is an equivalence
relation on G and generates equivalence classes which are
called dominant classes, i.e. the group G is partitioned in-
to dominant classes as follows: G = K1+ K2+ … + Ks in

which Ki corresponds to the cyclic (dominant) subgroup
Gi selected from a non-redundant set of cyclic subgroups
of G denoted by SCSG.1–14

A molecule is said to be non-rigid if there are seve-
ral local minima on the potential energy surface easily
surmountable by the molecular system via a tunneling
rearrangement. A non-rigid molecule typically possesses
several potential valleys separated by relatively low ener-
gy barriers, and thus exhibits large amplitude tunneling
dynamics among various potential minima. Because of
this deformability, the non-rigid molecules exhibit some
interesting properties of intramolecular dynamics, spec-
troscopy, dynamical NMR etc., all of which can be inter-
preted resorting to group theory. Group theory is one of
the most powerful mathematical tools in quantum chemi-
stry and spectroscopy. It can predict, interpret, and sim-
plify complex theories and data. Group theory is the best
formal method to describe the symmetry concept of mole-
cular structures. Group theory for non-rigid molecules is
becoming increasingly relevant and its numerous applica-
tions to large amplitude vibrational spectroscopy of small
organic molecules are described in the literature.15–19 The
molecular symmetry group of a non-rigid molecule was
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first defined by Longuet-Higgins20 although there have
been earlier works that suggested the need for such a fra-
mework by Hougen.21 Bunker and Papou{ek22 extended
the definition of the molecular symmetry group to linear
molecules using an extended molecular symmetry. The
operations of the molecular symmetry group and the
three-dimensional rotation group are used together to treat
the symmetry properties of molecules in electric and mag-
netic fields by Watson.23 The complete set of the molecu-
lar conversion operations that commute with the nuclear
motion operator will contain overall rotation operations
that describe a molecule rotating as a whole, and intramo-
lecular motion operations that describe molecular moie-
ties moving with respect to the rest of the molecule. These
operations form a group which is called the full non-rigid
molecule group (f-NRG) by Smeyers.24 Calculating the f-
NRGs using wreath product formalism was first introdu-
ced by Balasubramanian. He also computed the character
table of non-rigid groups under consideration.25–27

The present study investigates the Q-conjugacy cha-
racter tables of tetramethylethylene (Figure 1), the f-NRG
of which has been previously introduced.29 In order to de-
rive all of its integer-valued characters, it is shown that its
unmaturated group has 16 row- and column-reductions in
its character table. The reader is encouraged to consult re-
ferences26–32 for background materials. The notation we
use is standard and mainly taken from references.33–34

Figure 1. Geometry of Tetramethylethylene (2,3-Dimethylbut-2-
ene)

2. Results and Discussion

In this section we first describe some notation. Sup-
pose X be a set, a permutation representation P of a finite
group G is obtained when the group G acts on a finite set X
= {x1, x2, …, xt} from the right, which means that we are
given a mapping P: X × G → X via (x, g) → xg such that
the following holds: (xg)g’ = x(gg’) and x1 = x, for each g,
g’ ∈ G and x ∈ X. Now let it is assumed that one is given
an action P of G on X and a subgroup H of G. One consi-
ders the set of its right cosets Hg1

and the corresponding
partition of G into these cosets: G = Hg1

+ Hg2
+…+ Hgm

For any g ∈ G, the set of all permutations 

G(/H)g =

constructs a permutation representation of G, which is
called a coset representation of G by H denoted by G(/H).
The degree of G(/H) is |G| / |H|, where |G| is the number of
elements in G. Obviously, the coset representation G(/H)
is transitive, i.e. has just one orbit.1 To denote the consecu-
tive classes of elements of order n, for example if an ele-
ment g has order n, then its class is denoted by nx, where
x runs over the letters a, b, etc. If M is a normal subgroup
of G and K is another subgroup of G such that M∩K =
{e} and G = MN = <M, N>, then G is called a semi direct
product of N by M which is denoted by N : M ∼= M × N.

Let K and H be groups and suppose H acts on the set
Γ. Then the wreath product of K by H, denoted by K ∼ H
is defined to be the semi direct product KΓ : H such that
KΓ = {f | f: Γ → K}, see references33–34 for more details.

Let C be a u × u matrix of character table of G.
Then, C is transformed into a more concise form called
the Q-conjugacy character table that we denote its s × s
matrix by CQ (s ≤ u) as follows: If u = s, then C = CQ i.e. G
is a maturated group. Otherwise s < u, for each Gi ∈ SC-
SG (the corresponding dominant class Ki) set ti = m(Gi) /
φ(|Gi|) where m(Gi) = |NG(Gi)|/|CG(Gi)| (called the matu-
rity discriminant), φ is the Euler function and finally
NG(Gi) and CG(Gi) denote the normalizer and centralizer
of Gi in G, respectively for i = 1, …, s. If ti = 1 then Ki is
exactly a conjugacy class so there is no reduction in row
and column of C, but if ti > 1 then Ki is a union of ti-conju-
gacy classes of G (i.e. reduction in column) therefore the
sum of ti rows of irreducible characters via the same de-
gree in C (reduction in rows) gives us a reducible charac-
ter which is called the Q-conjugacy character with inte-
ger-valued. 

It has been shown that the f-NRG of tetramethy-
lethylene is a wreath product of the cyclic group of order
three with direct product of two copies of cyclic group of
order two,29 i.e. C3 ∼ (C2 × C2) as follow:

Referring to Figure 1, the group of each CH3 at the
four corners of the framework is given in terms of permu-
tations as follows: A1 = <(1, 2, 3)>, A2 = <(4, 5, 6)>, A3 =
<(7,8,9)>, A4 = <(10,11,12)>, where A1, A2, A3 and A4 are
the symmetry groups of the CH3 whose carbon atom is
marked as 13, 14, 15 and 16, respectively. Let T be the f-
NRG of tetramethylethylene, therefore T has the follo-
wing structure: T = (A1× A2 × A3 × A4) : V, where V = {id,
(13, 14)(15, 16)(a, b), (13, 16)(14, 15)(a, b), (13, 15)(14,
16)(a, b)} is the Klein’s four group, so it is obvious that
every element of T is as a vector (a1, a2, a3, a4, v) such that
ai ∈ Gi and v ∈ V, i.e. T can be written in terms of wreath
product T = C3 ∼ (C2 × C2). Now, the computations of the
symmetry properties of molecules were carried out with
the aid of GAP SYSTEM,35 a group theory software pac-
kage which is free and extendable. We run the following
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Table 1: The Markaracter Table for Tetramethylethylene

MC G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

T(/G1) 324 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G2) 162 18 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G3) 162 0 18 0 0 0 0 0 0 0 0 0 0 0 0
T(/G4) 162 0 0 18 0 0 0 0 0 0 0 0 0 0 0
T(/G5) 108 0 0 0 54 0 0 0 0 0 0 0 0 0 0
T(/G6) 108 0 0 0 0 54 0 0 0 0 0 0 0 0 0
T(/G7) 108 0 0 0 0 0 54 0 0 0 0 0 0 0 0
T(/G8) 108 0 0 0 0 0 0 27 0 0 0 0 0 0 0
T(/G9) 108 0 0 0 0 0 0 0 27 0 0 0 0 0 0
T(/G10) 108 0 0 0 0 0 0 0 0 54 0 0 0 0 0
T(/G11) 108 0 0 0 0 0 0 0 0 0 54 0 0 0 0
T(/G12) 108 0 0 0 0 0 0 0 0 0 0 27 0 0 0
T(/G13) 108 0 0 0 0 0 0 0 0 0 0 0 108 0 0
T(/G14) 108 0 0 0 0 0 0 0 0 0 0 0 0 54 0
T(/G15) 108 0 0 0 0 0 0 0 0 0 0 0 0 0 27
T(/G16) 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G17) 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G18) 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G19) 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G20) 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G21) 54 6 0 0 0 0 0 0 0 0 27 0 0 0 0
T(/G22) 54 18 0 0 0 0 0 0 0 0 0 0 0 27 0
T(/G23) 54 0 18 0 0 0 0 0 0 0 0 0 0 0 0
T(/G24) 54 0 6 0 0 0 27 0 0 0 0 0 0 0 0
T(/G25) 54 0 0 6 0 27 0 0 0 0 0 0 0 0 0
T(/G26) 54 0 0 18 0 0 0 0 0 27 0 0 0 0 0
T(/G27) 54 6 0 0 0 0 0 0 0 0 0 0 54 0 0
T(/G28) 54 18 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G29) 54 0 0 6 0 0 0 0 0 0 0 0 54 0 0

MC G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28 G29

T(/G1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G16) 108 0 0 0 0 0 0 0 0 0 0 0 0 0
T(/G17) 0 108 0 0 0 0 0 0 0 0 0 0 0 0
T(/G18) 0 0 108 0 0 0 0 0 0 0 0 0 0 0
T(/G19) 0 0 0 27 0 0 0 0 0 0 0 0 0 0
T(/G20) 0 0 0 0 27 0 0 0 0 0 0 0 0 0
T(/G21) 0 0 0 0 0 3 0 0 0 0 0 0 0 0
T(/G22) 0 0 0 0 0 0 9 0 0 0 0 0 0 0
T(/G23) 54 0 0 0 0 0 0 18 0 0 0 0 0 0
T(/G24) 0 0 0 0 0 0 0 0 3 0 0 0 0 0
T(/G25) 0 0 0 0 0 0 0 0 0 3 0 0 0 0
T(/G26) 0 0 0 0 0 0 0 0 0 0 9 0 0 0
T(/G27) 0 0 0 0 0 0 0 0 0 0 0 6 0 0
T(/G28) 0 0 54 0 0 0 0 0 0 0 0 0 18 0
T(/G29) 0 0 0 0 0 0 0 0 0 0 0 0 0 6
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Table 2: The Q-Conjugacy Character Table for Tetramethylethylene

CQ D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

T1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T2 1 1 –1 –1 1 1 1 1 1 1 1 1 1 1 1
T3 1 –1 1 –1 1 1 1 1 1 1 1 1 1 1 1
T4 1 –1 –1 1 1 1 1 1 1 1 1 1 1 1 1
T5 2 2 2 2 –1 –1 2 –1 2 –1 2 –1 2 –1 –1
T6 2 2 –2 –2 –1 –1 2 –1 2 –1 2 –1 2 –1 –1
T7 2 –2 2 –2 –1 –1 2 –1 2 –1 2 –1 2 –1 –1
T8 2 –2 –2 2 –1 –1 2 –1 2 –1 2 –1 2 –1 –1
T9 2 0 –2 0 –1 2 –1 –1 2 2 –1 –1 –1 2 –1
T10 2 0 2 0 –1 2 –1 –1 2 2 –1 –1 –1 2 –1
T11 2 –2 0 0 –1 –1 2 2 –1 2 –1 –1 –1 –1 2
T12 2 2 0 0 –1 –1 2 2 –1 2 –1 –1 –1 –1 2
T13 2 0 0 –2 –1 2 –1 2 –1 –1 –1 2 2 –1 –1
T14 2 0 0 2 –1 2 –1 2 –1 –1 –1 2 2 –1 –1
T15 4 0 –4 0 1 –2 –2 1 4 –2 –2 1 –2 –2 1
T16 4 0 4 0 1 –2 –2 1 4 –2 –2 1 –2 –2 1
T17 4 –4 0 0 1 1 4 –2 –2 –2 –2 1 –2 1 –2
T18 4 4 0 –4 1 1 4 –2 –2 –2 –2 1 –2 1 –2
T19 4 0 0 4 1 –2 –2 –2 –2 1 –2 –2 4 1 1
T20 4 0 0 0 1 –2 –2 –2 –2 1 –2 –2 4 1 1
T21 4 0 0 0 1 –2 –2 –2 –2 4 1 1 1 –2 –2
T22 4 0 0 0 1 –2 –2 4 1 –2 1 –2 –2 1 –2
T23 4 0 0 0 1 4 1 –2 –2 –2 1 –2 –2 –2 1
T24 8 0 0 0 –1 2 –4 2 –4 –4 2 –1 2 2 2
T25 8 0 0 0 –1 2 –4 –4 2 2 2 2 –4 –1 2
T26 8 0 0 0 –1 –4 2 2 –4 2 2 2 –4 2 –1
T27 8 0 0 0 5 2 2 2 2 2 –1 –1 2 –1 –1
T28 8 0 0 0 –1 –4 2 –4 2 –4 –1 2 2 2 2
T29 8 0 0 0 –4 2 2 2 2 2 –1 –1 2 –1 –1

CQ D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29

T1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T2 1 1 1 1 1 1 1 1 –1 –1 –1 –1 –1 –1
T3 1 1 1 1 1 –1 –1 –1 1 1 1 –1 –1 –1
T4 1 1 1 1 1 –1 –1 –1 –1 –1 –1 1 1 1
T5 –1 –1 2 2 2 –1 –1 2 –1 –1 2 –1 –1 2
T6 –1 –1 2 2 2 –1 –1 2 1 1 –2 1 1 –2
T7 –1 –1 2 2 2 1 1 –2 –1 –1 2 1 1 –2
T8 –1 –1 2 2 2 1 1 –2 1 1 –2 –1 –1 2
T9 2 –1 2 –1 2 0 0 0 1 –2 1 0 0 0
T10 2 –1 2 –1 2 0 0 0 –1 2 –1 0 0 0
T11 2 –1 –1 2 2 1 –2 1 0 0 0 0 0 0
T12 2 –1 –1 2 2 –1 2 –1 0 0 0 0 0 0
T13 2 –1 2 2 –1 0 0 0 0 0 0 1 –2 1
T14 2 –1 2 2 –1 0 0 0 0 0 0 –1 2 –1
T15 –2 1 4 –2 4 0 0 0 –1 2 2 0 0 0
T16 –2 1 4 –2 4 0 0 0 1 –2 –2 0 0 0
T17 –2 1 –2 4 4 –1 2 2 0 0 0 0 0 0
T18 –2 1 –2 4 4 1 –2 –2 0 0 0 0 0 0
T19 –2 1 4 4 –2 0 0 0 0 0 0 –1 2 2
T20 –2 1 4 4 –2 0 0 0 0 0 0 1 –2 –2
T21 4 1 –2 –2 4 0 0 0 0 0 0 0 0 0
T22 4 1 –2 4 –2 0 0 0 0 0 0 0 0 0
T23 4 1 4 –2 –2 0 0 0 0 0 0 0 0 0
T24 –4 –1 –4 –4 8 0 0 0 0 0 0 0 0 0
T25 –4 –1 –4 8 –4 0 0 0 0 0 0 0 0 0
T26 –4 –1 8 –4 –4 0 0 0 0 0 0 0 0 0
T27 –4 –4 –4 –4 –4 0 0 0 0 0 0 0 0 0
T28 8 –1 –4 –4 –4 0 0 0 0 0 0 0 0 0
T29 –4 5 –4 –4 –4 0 0 0 0 0 0 0 0 0
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program at the GAP prompt to compute the mark table,
the character table and the set SCSG of the f-NRG of te-
tramethylethylene.

After running the program, the following elements
belong to the non-redundant set of cyclic subgroups of T:
G1 = id, G2 = <(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)>, G3
= <(1, 10)(2, 11)(3, 12)(4, 7)(5, 8)(6, 9)>, G4 = <(1, 4)(2,
5)(3, 6)(7, 10)(8, 11)(9, 12)>, G5 = <(1, 2, 3)(4, 6, 5)(7, 9,
8)(10, 11, 12)>, G6 = <(1, 2, 3)(4, 5, 6)(7, 9, 8)(10, 12,
11)>, G7 = <(1, 2, 3)(4, 6, 5)(7, 8, 9)(10, 12, 11)>, G8 =
<(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)>, G9 = <(7, 8, 9)(10,
11, 12)>, G10 = <(4, 5, 6)(7, 9, 8)>, G11 = <(4, 5,
6)(10,12,11)>, G12 = <(4, 5, 6)(7, 8, 9)>, G13 = <(7, 8,
9)(10, 12, 11)>, G14 = <(4, 5, 6)(10, 11, 12)>, G15 = <(4,
5, 6)(7, 9, 8)(10, 11, 12)>, G16 = <(4, 5, 6)(7, 8, 9)(10, 11,
12)>, G17 = <(4, 5, 6)(7, 8, 9)(10, 12, 11)>, G18 = <(1, 2,
3)(4, 5, 6)(7, 8, 9)(10, 12, 11)>, G19 = <(10, 11, 12)>, G20
= <(4, 5, 6)(7, 9, 8)(10, 12, 11)>, G21 = <(1, 2, 3)(4, 5,
6)(7, 9, 8)(10, 12, 11), (1, 4)(2, 5)(3, 6)(7,10)(8,11)(9,
12)>, G22 = <(1, 2, 3)(4, 6, 5)(7, 8, 9)(10, 12, 11), (1,
7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)>, G23 = <(1, 2, 3)(4, 6,
5)(7, 9, 8)(10, 11, 12), (1, 10)(2, 11)(3, 12)(4, 7)(5, 8)(6,
9)>, G24 = <(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12), (1, 4)(2,
5)(3, 6)(7, 10)(8, 11)(9, 12)>, G25 = <(1, 2, 3)(4, 5, 6)(7,
8, 9)(10, 11, 12), (1, 10)(2, 11)(3, 12)(4, 7)(5, 8)(6, 9)>,
G26 = <(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12), (1, 7)(2, 8)(3,
9)(4, 10)(5, 11)(6, 12)>, G27 = <(4, 5, 6)(7, 8, 9), (1,
10)(2, 11)(3, 12)(4, 7)(5, 8)(6, 9)>, G28 = <(4, 5, 6)(10,
11, 12), (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)> and G29 =
<(7, 8, 9)(10, 11, 12), (1, 4)(2, 5)(3, 6)(7, 10)(8, 11)(9,
12)>.

See MC the markaracter table of tetramethylethylene
which is derived from M174 × 174, the mark table of T in
Table 1. Besides, we can see that T has exactly 29 domi-
nant classes as follow:

D1 = 1a, D2 = 2a, D3 = 2b, D4 = 2c, D5 = 3a∪3b, D6 =
3c∪3e, D7 = 3d, D8 = 3f∪3n, D9 = 3g, D10 = 3h∪3q, D11 =
3i∪3s, D12 = 3j∪3r, D13 = 3k, D14 = 3l∪3p, D15 = 3m∪3o,
D16 = 3t∪3z, D17 = 3u∪3y, D18 = 3v, D19 = 3w, D20 = 3x,
D21 = 6a∪6b, D22 = 6c∪6e, D23 = 6d, D24 = 6f∪6g, D25 =
6h∪6j, D26 = 6i, D27 = 6k∪6l, D28 = 6m∪6o, D29 = 6n such
that the dominant classes Di for i ∈ {5, 6, 8, 10, 11, 12, 14,
15, 16, 17, 21, 22, 24, 25, 27, 28} are unmaturated which
shows 16 column-reductions (similarly, row-reductions)
in C45×45, the character table of T = C3 ∼ (C2 × C2) in the
reference.29 There are sixteen unmaturated integer-valued
characters in CQ the Q-conjugacy character table of T with
the sum of two irreducible characters via same degrees.
All integer-valued characters of tetramethylethylene are
presented in Table 2. 

3. Conclusions

In this paper using GAP program all integer-valued
characters of the f-NRG of tetramethylethylene are calcu-
lated by the Q-conjugacy relationships. It is shown that this
group has 29 dominant classes (similarly, Q-conjugacy
characters) such that 16 of them are unmaturated (simi-
larly, Q-conjugacy characters such that they are the sum of
two irreducible characters) and the complete Q-conjugacy
character table and the markaracter table of this group is
computed successfully. The derived markaracter table and
Q-conjugacy character table would also be valuable in ot-
her applications such as in the context of chemical applica-
tions of graph theory and aromatic compounds.14–22

Furthermore, we introduce the following conjecture.
Conjecture. Let Gi be a finite group for i = 1, …, n

and W = G1 ∼ G2 ∼ …. ∼ Gn. If there exists k ∈ {1, …, n}
such that Gk is an unmaturated group, then W is an unma-
turated group too.
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Povzetek
Zrele in nezrele grupe je S. Fujita vpeljal v tabele markarakterjev in Q-konjugiranosti kon~nih grup. Fujita je vpeljal tu-
di bolj zgo{~ene oblike, imenovane Q-konjugacijski karakterji s celo{tevil~nimi vrednostmi nereducibilnih karakterjev
kon~nih grup ter uporabil svoje rezultate za o{tevil~enje izomerov molekul.
V tem prispevku z uporabo programskega paketa GAP in z upo{tevanjem odnosov med Q-konjugiranostjo izra~unamo
vse celo{tevil~ne karakterje popolne netoge grupe (f-NRG) tetrametiletilena (2,3-dimetilbut-2-en). Poka`emo tudi, da
ima ta grupa 29 dominantnih razredov (oz. Q-konjugacijskih karakterjev) in sicer tako, da jih je 16 nezrelih (Q-konju-
gacijski karakterji so taki, da so vsota dveh nereducibilnih karakterjev). Nato kot prvi izpeljemo tabelo markarakterjev
in Q-konjugacijskih karakterjev za f-NRG tetrametiletilena.


